翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Penrose-Hawking singularity theorems : ウィキペディア英語版
Penrose–Hawking singularity theorems
The Penrose–Hawking singularity theorems are a set of results in general relativity which attempt to answer the question of when gravitation produces singularities.
A singularity in solutions of the Einstein field equations is one of two things:
# a situation where matter is forced to be compressed to a point (a space-like singularity)
# a situation where certain light rays come from a region with infinite curvature (time-like singularity)
Space-like singularities are a feature of non-rotating uncharged black-holes, while time-like singularities are those that occur in charged or rotating black hole exact solutions. Both of them have the following property:
::geodesic incompleteness: Some light-paths or particle-paths cannot be extended beyond a certain proper-time or affine-parameter (affine parameter is the null analog of proper time).
It is still an open question whether time-like singularities ever occur in the interior of real charged or rotating black holes, or whether they are artifacts of high symmetry and turn into spacelike singularities when realistic perturbations are added.
The Penrose theorem guarantees that some sort of geodesic incompleteness occurs inside ''any'' black hole, whenever matter satisfies reasonable energy conditions (It does not hold for matter described by a super-field, i.e., the Dirac field). The energy condition required for the black-hole singularity theorem is weak: it says that light rays are always focused together by gravity, never drawn apart, and this holds whenever the energy of matter is non-negative.
Hawking's singularity theorem is for the whole universe, and works backwards in time: in Hawking's original formulation, it guaranteed that the Big Bang has infinite density. Hawking later revised his position in A Brief History of Time (1988) where he stated that "there was in fact no singularity at the beginning of the universe" (p50). This revision followed from quantum mechanics, in which general relativity must break down at times less than the Planck time. Hence general relativity cannot be used to show a singularity.
Penrose's theorem is more restricted, it only holds when matter obeys a stronger energy condition, called the ''dominant energy condition'', which means that the energy is bigger than the pressure. All ordinary matter, with the exception of a vacuum expectation value of a scalar field, obeys this condition. During inflation, the universe violates the stronger dominant energy condition (but not the weak energy condition), and inflationary cosmologies avoid the initial big-bang singularity, rounding them out to a smooth beginning.
== Interpretation and significance ==

In general relativity, a singularity is a place that objects or light rays can reach in a finite time where the curvature becomes infinite, or space-time stops being a manifold. Singularities can be found in all the black-hole spacetimes, the Schwarzschild metric, the Reissner–Nordström metric, the Kerr metric and the Kerr–Newman metric and in all cosmological solutions which don't have a scalar field energy or a cosmological constant.
One cannot predict what might come "out" of a big-bang singularity in our past, or what happens to an observer that falls "in" to a black-hole singularity in the future, so they require a modification of physical law. Before Penrose, it was conceivable that singularities only form in contrived situations. For example, in the collapse of a star to form a black hole, if the star is spinning and thus possesses some angular momentum, maybe the centrifugal force partly counteracts gravity and keeps a singularity from forming. The singularity theorems prove that this cannot happen, and that a singularity will always form once an event horizon forms.
In the collapsing star example, since all matter and energy is a source of gravitational attraction in general relativity, the additional angular momentum only pulls the star together more strongly as it contracts: the part outside the event horizon eventually settles down to a Kerr black hole (see No-hair theorem). The part inside the event horizon necessarily has a singularity somewhere. The proof is somewhat constructive— it shows that the singularity can be found by following light-rays from a surface just inside the horizon. But the proof does not say what type of singularity occurs, spacelike, timelike, orbifold, jump discontinuity in the metric. It only guarantees that if one follows the time-like geodesics into the future, it is impossible for the boundary of the region they form to be generated by the null geodesics from the surface. This means that the boundary must either come from nowhere or the whole future ends at some finite extension.
An interesting "philosophical" feature of general relativity is revealed by the singularity theorems. Because general relativity predicts the inevitable occurrence of singularities, the theory is not complete without a specification for what happens to matter that hits the singularity. One can extend general relativity
to a unified field theory, such as the Einstein–Maxwell–Dirac system, where no such singularities occur.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Penrose–Hawking singularity theorems」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.